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Abstract
A general theory is developed to describe diffusion phenomena in biased
semiconductors and semiconductor superlattices. It is shown that the Einstein
relation is not applicable for all field strengths so that the calculation of the field-
mediated diffusion coefficient represents a separate task. Two quite different
diffusion contributions are identified. The first one disappears when the dipole
operator commutes with the Hamiltonian. It plays an essential role in the theory
of small polarons. The second contribution is obtained from a quantity that is
the solution of a kinetic equation but that cannot be identified with the carrier
distribution function. This is in contrast to the drift velocity, which is closely
related to the distribution function. A general expression is derived for the
quantum diffusion regime, which allows a clear physical interpretation within
the hopping picture.

1. Introduction

Carrier motion in quantum systems exhibits a variety of different behaviours including ballistic
transport, diffusion and localization. Each of these features of carrier motion has attracted a
great deal of interest. The quantum theory of high-field carrier transport has been developed
to a high level of sophistication. In contrast, there does not seem to be much theoretical
work addressing the detailed microscopic description of diffusion processes in semiconductors
under the application of electric fields of arbitrary strength. This will be the subject of this
paper, in which we focus on a general treatment of electric-field driven carrier diffusion in
semiconductors.

The most interesting aspect that we are confronted with in a study of diffusion phenomena
is quantum diffusion, when particles tunnel through energy barriers. An example of quantum
diffusion is the motion of muonium atoms in solids [1]. There are different modes of quantum
diffusion depending on the type of interaction with host atoms, including the competition
between localization and delocalization. As muonium atoms are heavier than electrons,
quantum diffusion applies more than ever to electrons,which are localized by random potentials
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or strong electric fields. Moreover, the concept of quantum diffusion has been applied to
completely different areas of physics, for instance to the treatment of open quantum systems
within the quantum state diffusion picture [2] or to numerical calculations based on the diffusion
Monte Carlo approach [3].

Based on semiclassical Boltzmann or balance equations as well as the nonequilibrium
Green function technique, the theory of electron transport in semiconductors has advanced
considerably in recent years. Contrary to this achievement, there are only a few microscopic
treatments of the field-induced carrier diffusion in semiconductors. Considering the quantum
Brownian motion of a single electron in a superlattice (SL), the electron diffusion coefficient
has been calculated within a one-dimensional model [4]. The results apply to the Wannier–
Stark (WS) transport regime, where the electron drift velocity is due to inelastic scattering.
Taking into account scattering on acoustic phonons, Mourokh et al [4] obtained the result
that the electron diffusion vanishes at the positions of the electron–phonon resonances. The
derived analytical expressions for the drift velocity and the diffusion coefficient have been used
for a microscopic analysis of field-domain formation in SLs [5]. This work complements a
former approach by Laikhtman and Miller [6], who presented a detailed microscopic theory of
current–voltage instabilities in SLs. However, to our knowledge there is no general approach
to carrier diffusion in semiconductors, which covers all electric-field strengths ranging from
the ohmic to the WS transport regime. It is the aim of this paper to fill this gap by presenting
a systematic microscopic theory of field-mediated carrier diffusion in semiconductors and
semiconductor SLs.

2. Basic theory

In this section, a microscopic theory is presented from which general expressions for the
field-dependent average drift velocity and diffusion coefficient are derived. The approach
is restricted to the single-particle picture of a nondegenerate electron gas, which occupies
only one energy band. The treatment of interband (or intersubband) transitions as well as the
Coulomb interaction will be the subject of further work. We consider the situation when, after
the electric field is switched on, the electron distribution gradually approaches a homogeneous
state. Most interesting is the behaviour of the system at sufficiently long times after switching
on the field (t → ∞). The consideration of this limit is carried out in Laplace space (s → 0).
The quantity of most interest is the diffusion propagator P , which satisfies the following
phenomenological diffusion equation formulated in Laplace space

s P(r − r0|s) = δ(r − r0) + vz(s)
∂

∂z
P(r − r0|s) + Dzz(s)

∂2

∂z2
P(r − r0|s). (1)

Here, vz(s) and Dzz(s) denote the average drift velocity along the SL axis and a component
of the diffusion tensor respectively. These quantities are calculated from the moments of the
diffusion propagator

Zn(s) =
∫

d3r (z − z0)
n P(r − r0|s). (2)

Carrying out the calculations, we obtain

vz(s) = −s2 Z1(s), (3)

Dzz(s) = s2

2
Z2(s) − vz(s)2

s
, (4)

where Z0(s) = 1/s as derived from equation (1) has been taken into account. From the point
of view of a microscopic approach, the diffusion propagator P(r − r′, t) has to be identified
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with the conditional probability of finding a particle near the point r′ at time t , provided it
occupied the lattice site r at an earlier time t = 0. Using the Wannier representation, this
probability is calculated by an inverse Laplace transformation from the diagonal components
of the following vacuum expectation value [7]

Pm1m3
m2m4

(s) = 1

Z

∫ ∞

0
dt e−st Spph

{
e−Hph/kB T 〈0|am2 eiH t/h̄a+

m4
am3e

−iH t/h̄a+
m1

|0〉}, (5)

averaged over the vibrational subsystem described by the Hamiltonian Hph. From equation (5),
we deduce the quantity P(r − r0|s) ≡ Prr0

rr0
(s), which is used to calculate the moments in

equation (2). The fermionic creation and annihilation operators are denoted by a+
m and am.

The averaging is carried out over the vibrational degrees of freedom. The partition function is
expressed by Z = Tr{exp(−Hph/kB T )}. The total Hamiltonian

H = H ′ + HE, with H ′ = He + Hph + Hint (6)

of our system contains the contribution of the electric field

HE = −eE ·
∑
m

a+
mRmam, (7)

the free electron part

He =
∑
m,m′

ε(m − m′)a+
mam′, (8)

with the dispersion relation ε(k) in the Fourier space, and the interaction term Hint , which
accounts for elastic scattering on lattice defects and inelastic scattering on phonons. The
treatment of the diffusion propagator P proceeds by a diagrammatic analysis, from which a
Bethe–Salpeter equation is derived [8]

Pm1m3
m2m4

(s) = Rm1m3
m2m4

(s) +
∑
{m′

i }
P

m1m
′
1

m2m
′
2
(s)W

m′
1m′

3

m′
2m

′
4
(s)R

m′
3m3

m′
4m4

(s), (9)

with W being the scattering probability calculated from the interaction part Hint of the
Hamiltonian (in our general approach the form of Hint is not specified). R denotes the diffusion
propagator for a system of independent particles (Hint = 0), which is expressed by

Rm1m3
m2m4

(s) =
∫ ∞

0
dt e−st 〈0|am2e

i(He+HE )t/h̄a+
m4

am3e
−i(He+HE )t/h̄ a+

m1
|0〉. (10)

An equation of motion for this quantity is derived by integration by parts. The calculations are
most suitably carried out in the symmetry-adapted Wigner representation of the correlation
functions [8]

Pm1m3
m2m4

(s) = 1

N2

∑
k,k′,κ

P(k,k′,κ|s) exp

{
{ik(Rm2 − Rm1) − ik′(Rm4 − Rm3)

+
i

2
κ(Rm1 + Rm2 − Rm3 − Rm4)}

}
. (11)

Using this representation, the equation of motion of the bare diffusion propagator R has the
form

[s + Î (k′,κ)]R(k,k′,κ|s) = δk,k′, (12)

where the differential operator

Î (k′,κ) = eE
h̄

∇k′ − i

h̄

[
ε

(
k′ +

κ

2

)
− ε

(
k′ − κ

2

)]
(13)
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has been introduced. Applying this operator on both sides of the Wigner transformed version
of equation (9), we obtain

[s + Î (k′,κ)]P(k,k′,κ|s) = δk,k′ +
∑
k1

P(k,k1,κ|s)W (k1,k′,κ|s). (14)

This equation has to be solved under the restriction that the sum rule∑
k′

P(k,k′,κ = 0|s) = 1

s
(15)

is satisfied [8]. This sum rule follows from equation (14) by taking into account the relation of
detailed balance

∑
k′ W (k,k′,κ = 0|s) = 0. Equation (14) together with the condition (15)

represents our basic results, which allows a straightforward calculation of the moments

Zn(s) = in
∑
k,k′

∂n

∂κn
z

P(k,k′,κ|s)|κ=0 ≡ in
∑
k,k′

Pn(k,k′ |s). (16)

From these quantities, the drift velocity and the diffusion coefficient are easily obtained. The
correlation functions P1 and P2, which enter equation (16), are determined from the kinetic
equation (14). The formal solutions are expressed by

P1(k,k′|s) =
∑
k1

P(k1,k′|s)
{

ivz(k1)P(k,k1|s) +
∑
k2

P(k,k2|s)W1(k2,k1|s)
}
, (17)

P2(k,k′|s) =
∑
k1

P(k1,k′|s)
{

2ivz(k1)P1(k,k1|s)

+ 2
∑
k2

P1(k,k2|s)W1(k2,k1|s) +
∑
k2

P(k,k2|s)W2(k2,k1|s)
}
, (18)

where the abbreviations Wn(k,k′ |s) = ∂n W (k,k′,κ|s)/∂κn
z |κ=0 and vz(k) =

(1/h̄)∂ε(k)/∂kz have been used. The calculation of the moments Z1 and Z2 as well as the
respective observable vz(s) and Dzz(s) is facilitated by introducing the carrier distribution
function

f (k, s) = s
∑
k′

P(k′,k|s). (19)

According to the sum rule (15), the function defined in equation (19) is normalized
[
∑

k f (k, s) = 1]. A kinetic equation for the distribution function is easily obtained from
equation (14) and the definition in equation (19)[

s +
eE
h̄

∇k

]
f (k, s) = s +

∑
k′

f (k′, s)W (k′,k|s). (20)

In the relevant long-time limit (s → 0) and without taking into account the influence of
the electric field on the scattering probability W , we recover the Boltzmann equation from
equation (20). This is an additional justification for the identification of f (k) with the carrier
distribution function. The average drift velocity is obtained by inserting the formal solution
of equation (17) into (3) and by considering the sum rule (15). The final result for the average
drift velocity

vz(s) =
∑

k

ve f f (k, s) f (k, s) (21)

is expressed by an effective velocity [8]

ve f f (k, s) = vz(k) − i
∑
k′

W1(k,k′ |s), (22)
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which contains, in addition to the expected group velocity vz(k), a scattering-induced
contribution associated with W1. The latter term vanishes in most cases, when Hint commutes
with the dipole operator. However, in the theory of small polarons or for systems with discrete
energy levels, it is just this scattering-induced W1 contribution which dominates the average
drift velocity.

So far we have reproduced well the established results concerning the drift velocity that
were derived and discussed many years ago [8]. In the following, the calculational scheme
outlined above is applied to construct a general theory of field-mediated quantum diffusion in
semiconductors. Let us proceed by exploiting the formal solution of equation (18) to calculate
the second moment Z2. Introducing the distribution function f (k, s) from equation (19) and
the effective velocity from equation (22), we obtain

s Z2(s) = −2i
∑

k

ve f f (k, s)P1(k, s) − 1

s

∑
k1,k2

f (k1, s)W2(k1,k2|s), (23)

where the function P1(k, s) = ∑
k1

P1(k1,k|s) according to equation (14) is the solution of
the equation[

s +
eE
h̄

∇k

]
P1(k, s) −

∑
k′

P1(k
′, s)W (k′,k|s)

= i

s
vz(k) f (k, s) +

1

s

∑
k′

f (k′, s)W1(k
′,k|s), (24)

from which the sum rule

s2
∑

k

P1(k, s) = i
∑

k

ve f f (k, s) f (k, s) (25)

is obtained. To construct a solution which accounts for this restriction and which elucidates
the singular behaviour of P1(k, s) with respect to s we make the ansatz

P1(k, s) = i

s
ϕ(k, s) +

1

s2
B(s) f (k, s), (26)

with the constraint∑
k

ϕ(k, s) = 0. (27)

The function B(s) is completely determined by the sum rule (25). We obtain

B(s) = i
∑

k

ve f f (k, s) f (k, s) = ivz(s). (28)

ϕ(k, s) is the remaining unknown function, which we have to calculate. Inserting the ansatz
of equation (26) together with (28) into (23), we obtain from equation (4) our final result for
the diffusion coefficient

Dzz(s) =
∑

k

ve f f (k, s)ϕ(k, s) − 1
2

∑
k,k′

f (k, s)W2(k,k′ |s), (29)

in which the s dependence is regular and the limit s → 0 can easily be carried out. This is the
most general result that describes carrier diffusion in semiconductors on which an electric field
of arbitrary strength is applied. The second contribution on the right-hand side of equation (29)
vanishes when the dipole operator commutes with the Hamiltonian. In this case, the expression
for the diffusion coefficient corresponds to the one for the drift velocity. However, the function
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ϕ(k, s = 0) does not have the meaning of a carrier distribution function as does the function
f (k, s = 0) in equation (21). The kinetic equation for ϕ(k, s) is obtained from equation (24)
eE
h̄

∂

∂kz
ϕ(k, s) =

∑
k′

ϕ(k′, s)W (k′,k|s) + vz(k) f (k, s)

−
∑
k′

ve f f (k
′, s) f (k′, s) − i

∑
k′

f (k′, s)W1(k
′,k|s). (30)

This equation remains inhomogeneous even in the limit s → 0, whereas equation (20) for
the distribution function becomes homogeneous. In contrast to the average drift velocity, it is
not sufficient to obtain a solution for the carrier distribution function in order to calculate the
diffusion coefficient. Rather, it is necessary to determine a completely new quantity, which
cannot be identified with a distribution function and which is the solution of equation (30).
In the limit of weak electric fields, however, the Einstein relation is recovered, which relates
the diffusion coefficient to the drift velocity (mobility) in a simple manner. To derive the
Einstein relation for low electric fields, let us treat the standard situation when the Hamiltonian
commutes with the dipole operator. Taking into account only the lowest-order contributions
in the electric field, we obtain from equations (21) and (29)

v(1)
z =

∑
k

vz(k) f (1)(k), (31)

D(0)
zz =

∑
k

vz(k)ϕ(0)(k), (32)

where the superscript (1) or (0) refers to the order in the electric field. As has been rigorously
shown in [9], there is a close relationship between f (1)(k) and ϕ(0)(k) expressed by

f (1)(k) = eE
kB T

ϕ(0)(k). (33)

Inserting this equation into (31), we obtain for the mobility µ = v(1)
z /E the Einstein relation

µ = eDzz

kB T
. (34)

At the end of this section,we want to point out that the derivative W1 of the scattering probability
enters equation (30) even when the dipole operator commutes with the Hamiltonian. It is
just this term that plays an essential role in the description of quantum diffusion in the WS
regime. This observation leads us to the main physical conclusion of our paper. The derivative
W1(k

′,k|s) = ∂W (k′,k,κ|s)/∂κz |κ=0, which enters the collision integral, refers to spatially
inhomogeneous properties of the system. This inhomogeneity is an inherent feature of diffusion
processes which we do not encounter in the treatment of the drift velocity. The description
of diffusion phenomena requires the development of a separate theory, in which, contrary to
the drift velocity, the carrier distribution function does not play a central role. Only in some
limiting cases, when the Einstein relation is satisfied, do both quantities have the same origin.

3. Quantum diffusion in the Wannier–Stark regime

In this section the general expression for the diffusion coefficient derived in the previous section
is written in an equivalent form, from which the main contributions for a given electric-field
strength are easily identified. We start from our general result for the diffusion coefficient in
equation (29) and apply integration by parts. The resulting quantity ∂ϕ/∂kz is replaced by the
right-hand side of equation (30), in which ϕ(k) is substituted by the function

�(k) = ϕ(k) − 1

eE
ε(k) f (k), ε(k) = ε(k) −

∑
kz

ε(k). (35)
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Taking the limit s → 0, our general result in equation (29) for the diffusion coefficient is
expressed by

Dzz = 1

2

1

(eE)2

∑
k,k′

[ε(kz) − ε(k ′
z)]

2 f (k′)W (k′,k) +
i

eE
∑
k,k′

[ε(kz) − ε(k ′
z)] f (k′)W1(k

′,k)

+
1

eE
∑
k,k′

[ε(kz) − ε(k ′
z)]�(k′)W (k′,k)

− i
∑
k,k′

ϕ(k′)W1(k
′,k) − 1

2

∑
k,k′

f (k′)W2(k
′,k), (36)

which still provides an exact description of the field-dependent diffusion coefficient. The last
two terms on the right-hand side of this equation disappear in the standard situation, when the
interaction part of the Hamiltonian does not depend on the kinetic energy of the carriers so that∑

k W1,2(k
′,k) = 0. We want to point out that there are cases where just these contributions

dominate, as, for example, in the theory of small polarons. The third term on the right-hand
side of equation (36) is irrelevant for high electric fields, when �τ � 1 is satisfied (� denotes
the Bloch frequency and τ an effective scattering time). This can be seen by an analysis of the
kinetic equation for �(k), which is readily obtained from equations (30) and (35). The result
� ∼ E−3 leads to a contribution to the diffusion coefficient, which is proportional to E−4. For
intermediate field strengths (quasi-classical limit), when the Stark ladder is not fully resolved
�τ ∼ 1 and the band width 
 is sufficiently large so that 
/eEd > 1 is still satisfied, the most
important contribution to the diffusion coefficient is given by the first term on the right-hand
side of equation (36) with a field-independent scattering probability. This conclusion is justified
by the physical picture presented in appendix A. When the electric field increases further so
that the quantum regime is reached where WS states are formed, all terms on the right-hand
side of equation (36) become relevant except the contribution proportional to �. This regime
of quantum diffusion is most suitably described within the Houston representation, in which
these contributions can be combined to a compact expression for the diffusion coefficient. The
details of the calculation are presented in appendix B. The result

Dzz = 1
2

∑
k⊥,k′

⊥

∞∑
l=−∞

(ld)2 f (k′
⊥)W 0l

0l (k
′
⊥,k⊥) (37)

allows a clear physical interpretation within the hopping picture, in which quantum diffusion is
due to inelastic scattering. The diffusion coefficient is composed of the square of the hopping
length (ld)2 (with l being the layer index), the lateral carrier distribution function f (k⊥) and the
scattering probabilities in the site representation. For both classically high electric fields and
the WS regime the diffusion coefficient is completely determined by the scattering probability
and the carrier distribution function. The quantum-diffusion picture expressed by equation (37)
is reminiscent of the expression for the drift velocity valid for quantizing electric fields [10].
By switching to the Houston representation, we obtain from equations (21) and (22)

vz =
∑

k⊥,k′⊥

∞∑
l=−∞

(ld) f (k′
⊥)W 0l

0l (k
′
⊥,k⊥), (38)

which is interpreted within the hopping transport picture as an average shift of the carriers
per time interval (note that the scattering probability W has the dimension s−1). The
expressions in equations (37) and (38) are exact in the WS regime, when the WS ladder
is fully developed (�τ > 1) so that quantum effects become most prominent. Most interesting
are electron–phonon resonances, which have been identified in the drift velocity of narrow-
band semiconductors [11] and SLs [12], and which, according to equations (37) and (38), also
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appear in the diffusion coefficient with the same nonanalytic lineshape and at the same field
strengths.

In the ultra-quantum limit (�τ 
 1), there is only hopping between nearest neighbour
layers (i.e. the layer index l is restricted to −1, 0 and 1). In this regime, the lateral distribution
function has the form f (k⊥) ∼ exp[−ε(k⊥/kB T )] [11]. By taking into account the principle
of detailed balance for transitions between nearest-neighbour layers in an external field

W 01
01 (k′

⊥,k⊥)/W 0−1
0−1 (k⊥,k′

⊥) = exp

(
eEd + ε(k′

⊥) − ε(k⊥)

kB T

)
, (39)

the expressions for the diffusion coefficient and the drift velocity as obtained from
equations (37) and (38) can be related to each other. The result

Dzz = vzd

2
coth

eEd

2kB T
, (40)

which is valid in the ultra-quantum limit (�τ 
 1), preserves the symmetry of the diffusion
coefficient with respect to the electric field. Whereas the drift velocity is antisymmetric
vz(−E) = −vz(E), we obtain from equation (40) for the diffusion coefficient the symmetry
property Dzz(−E) = Dzz(E). If in addition to �τ 
 1, the inequality 2kB T < eEd is
satisfied, both the drift velocity and the diffusion coefficient decrease with increasing electric
field in the same manner. The detailed form of the negative differential conductivity, which
is expected to occur in the hopping transport regime, depends on the relevant scattering
mechanism [13]. When scattering on polar-optical phonons dominates, the drift velocity
exhibits a 1/E2 dependence in the ultra-quantum limit. Other scattering mechanisms give
rise to other characteristic field asymptotics. For the mobility µ = vz/E , we obtain from
equation (40)

µ = eDzz

kB T

tanh(eEd/2kB T )

eEd/2kB T
, (41)

which reproduces the Einstein relation in the limit of sufficiently high temperatures (eEd <

2kB T ). Under the condition 2kB T < eEd , we have µ = 2Dzz/(Ed), which corresponds to
Dzz = vzd/2.

4. Summary

A general microscopic theory has been developed for the carrier diffusion in semiconductors
and semiconductor SLs, at which a constant electric field of arbitrary strength is applied. The
approach has been restricted to the treatment of one occupied band. Unlike the drift velocity
or the current density, the diffusion coefficient results from a function that does not have the
meaning of a distribution function. It is necessary to derive a specific equation for this quantity,
which has been accomplished in section 2. In both the drift velocity and the diffusion coefficient
there is an additional scattering-induced contribution when the Hamiltonian does not commute
with the dipole operator. This happens, for example, in the theory of small polarons. Our final
result as expressed in equations (29) and (37) allows a detailed study of field-mediated diffusion
phenomena in realistic three-dimensional semiconductor (or SL) models. First results have
already been obtained for a one-dimensional SL model treated in the quasi-elastic scattering
regime [14]. Further applications may start from the kinetic equation (30) (which plays the
same role for the diffusion coefficient as the Boltzmann equation for the drift velocity) and the
representation (29), which has a similar form to equation (21) for the drift velocity. Such an
approach is applicable for systems with delocalized electronic states. The treatment of the WS
regime, however, would start from the Houston representation (37), which describes quantum
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diffusion in the hopping picture. A characteristic effect of quantum diffusion is the appearance
of electron–phonon resonances, which were predicted many years ago to occur in the current
density [15]. From the general results for the drift velocity in equation (38) and the diffusion
coefficient in equation (37), we conclude that the energy positions and the nonanalytic form of
the electron–phonon resonances agree in both quantities. In the ultra-quantum limit (�τ 
 1),
the diffusion coefficient exhibits the same electric-field dependence as the drift velocity.
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Appendix A. Diffusion at classically high electric fields

On the basis of physical arguments, the diffusion coefficient for classically high electric fields is
considered. Let us treat the hopping-like motion of carriers induced by scattering as illustrated
in figure A.1. The particle remains at a given position zi until it hops due to scattering to
another one. After n steps, the particle reaches the position

Rn =
n∑

i=1


zi . (A.1)

The diffusion coefficient is related to R2
n . The time evolution of this quantity has the form

R(t)2 =
∞∑

n=0

R2
n

∫ t

0
dt ′ [δ(t ′ − τ1 − · · · − τn) − δ(t ′ − τ1 − · · · − τn − τn+1)]. (A.2)

To calculate Dzz(s), we need the Laplace transform of R(t)2, which is expressed by

Z2(s) = 1

s

∫ ∞

0
dt e−st dR(t)2

dt
= 1

s

∞∑
n=0

R2
n e−s(τ1+···+τn)(1 − e−sτn+1), (A.3)

where an integration by parts has been applied. To facilitate the consideration, the required
time average is performed over statistically independent time steps. We obtain

〈Z2(s)〉 = 1

s

∞∑
n=0

{
nλn−1(1 − λ)〈e−sτ (
z)2〉 + n(n − 1)λn−2(1 − λ)〈
ze−sτ 〉2

}
, (A.4)

with λ = 〈exp(−sτ )〉. In the limit t → ∞ (or s → 0), we expand all quantities with respect
to s and retain only the most divergent contributions to 〈Z2(s)〉. The result

〈Z2(s)〉 ≈ 1

s2

〈(
z)2〉
〈τ 〉 +

2

s3

( 〈
z〉
〈τ 〉

)2

(A.5)

is expressed by the mean values 〈
z〉 and 〈(
z)2〉, which are estimated taking into account
the field-induced periodic carrier motion [11]. For a one-dimensional system, the velocity of
this periodic motion is given by

v[kz(t)] = 1

h̄

dε(kz + eEt/h̄)

dkz
= 1

eE
dε

dt
, (A.6)

where the dispersion relation is periodic ε(kz + 2π/d) = ε(kz). Due to scattering, the quasi
momentum of the carrier changes from kz to k ′

z at a given moment T . Afterwards the carrier
oscillates again in k space and takes over the original quasi momentum kz at a later time T +
t .
During the time interval 
t , the carrier is displaced by


z =
∫ T +
t

T
dt v[kz(t)] = ε(kz) − ε(k ′

z)

eE
, (A.7)



1424 V V Bryksin and P Kleinert

Figure A.1. Schematic diagram of the trajectory of a classical particle in the space–time coordinate
system.

which is averaged by using the scattering probability. For a three-dimensional system, we
introduce the lateral distribution function and obtain for the scattering-induced carrier shift

〈
z〉 =
∑
k,k′

ε(kz) − ε(k ′
z)

eE
f (k′

⊥)W (k′,k)〈τ 〉. (A.8)

Accordingly, we obtain

〈(
z)2〉 =
∑
k,k′

(
ε(kz) − ε(k ′

z)

eE

)2

f (k′
⊥)W (k′,k)〈τ 〉, (A.9)

which is inserted into equation (A.5). The final result for the diffusion coefficient is obtained
from equation (4)

Dzz = 1

2

1

(eE)2

∑
k,k′

(ε(kz) − ε(k ′
z))

2 f (k′
⊥)W (k′,k), (A.10)

where vz = 〈z〉/〈τ 〉 has been used. The expression for the diffusion coefficient in
equation (A.10), derived for quasi-classical particles subject to strong electric fields, completely
agrees with the first term on the right-hand side of equation (36). This result can be compared
with the expression for the drift velocity vz = 〈z〉/〈τ 〉 obtained from equation (A.8). In the
considered regime of classically high electric fields, the drift velocity decreases with increasing
field according to vz ∼ 1/E , whereas the diffusion coefficient exhibits an inverse quadratic
dependence Dzz ∼ 1/E2. For quasi-elastic scattering, we again recover the Einstein relation,
when the principle of detailed balance is taken into account.

Appendix B. The scattering probability in the WS representation

In this appendix, we will exploit the Houston representation for the scattering probability [11]

W (k′,k,κ) =
∑
mi

W m1m3
m2m4

(k′
⊥,k⊥) exp

{
i(m3 − m4)kzd − i(m1 − m2)k

′
zd

+
i

2
(m1 + m2 − m3 − m4)κzd − iχ

(
k′ +

κ

2

)
+ iχ

(
k′ − κ

2

)

+ iχ

(
k +

κ

2

)
− iχ

(
k − κ

2

)}
, (B.1)
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with χ(k) being determined by

eE
∂χ(k)

∂kz
= ε(k), (B.2)

to derive the final expression (37) for the quantum diffusion. We start from equation (29) for the
diffusion coefficient, perform an integration by parts, and replace the quantity ∂ϕ/∂kz by the
right-hand side of the kinetic equation (30). Taking into account the relation of detailed balance∑

k W (k′,k) = 0 and calculating the quantities W1(k
′,k) and W2(k

′,k) from equation (B.1),
we obtain

Dzz = d

2

∑
k,k′

�(k′)
∑
mi

(m1 + m2 − m3 − m4)W m1m3
m2m4

(k′
⊥,k⊥)e−i(m1−m2)k′

z d+i(m3−m4)kz d

+
d2

2

∑
k,k′

f (k′)
∑
mi

1

4
(m1 + m2 − m3 − m4)

2W m1m3
m2m4

(k′
⊥,k⊥)

× e−i(m1−m2)k′
zd+i(m3−m4)kzd . (B.3)

At high electric fields (�τ > 1), the first contribution, which is proportional to �, can be
neglected. In the second contribution on the right-hand side of equation (B.3), f (k) is replaced
by the lateral distribution function f (k⊥). After carrying out the kz and k ′

z integrals, we arrive
at the final result in equation (37), valid in the Stark ladder regime (�τ > 1).
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